Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-bromopyridinium) hexabromidostannate(IV)

Basem Fares Ali, ${ }^{\text {a }}$ Rawhi H. Al-Far ${ }^{\text {b }}$ * and Salim F. Haddad ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, ${ }^{\mathbf{b}}$ Faculty of Information Technology and Science, Al-Balqa'a Applied University, Salt, Jordan, and ${ }^{\text {c }}$ Department of Chemistry, The University of Jordan, Amman, Jordan
Correspondence e-mail: rohi@bau.edu.jo

Received 10 April 2008; accepted 26 April 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$; R factor $=0.068 ; w R$ factor $=0.178$; data-to-parameter ratio $=27.0$.

The asymmetric unit of the title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrN}\right)_{2}{ }^{-}$ [SnBr_{6}], contains one cation and one half-anion. The [$\left.\mathrm{SnBr}_{6}\right]^{2-}$ anion is located on an inversion center and forms a quasi-regular octahedral arrangement. The crystal structure consists of two-dimensional supramolecular layers assembled via hydrogen-bonding interactions of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}-\mathrm{Sn}[D \cdots A$ $=3.375$ (13) -3.562 (13) \AA and $D-H \cdots A=127-142^{\circ}$, along with $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ synthons $[3.667$ (2) and 3.778 (3) \AA]. These layers are parallel to the $b c$ plane and built up from anions interacting extensively with the six surrounding cations.

Related literature

The title salt is isomorphous with the Te analogue (Fernandes et al., 2004). For related literature, see: Al-Far \& Ali (2007); Ali, Al-Far \& Al-Sou'od (2007); Ali \& Al-Far (2007); Ali, AlFar \& Ng (2007); Allen et al. (1987); Aruta et al. (2005); Hill (1998); Kagan et al. (1999); Knutson et al. (2005); Raptopoulou et al. (2002); Tudela \& Khan (1991); Willey et al. (1998).

Experimental

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrN}\right)_{2}\left[\mathrm{SnBr}_{6}\right]$

$$
\alpha=73.14(3)^{\circ}
$$

$M_{r}=916.12$
Triclinic, $P \overline{1}$
$a=7.4037$ (15) \AA
$\beta=67.98$ (3) ${ }^{\circ}$
$\gamma=82.44$ (3) ${ }^{\circ}$
$V=516.4(2) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation

$$
\begin{aligned}
\mu & =16.71 \mathrm{~mm}^{-1} \\
T & =293(2) \mathrm{K}
\end{aligned}
$$

$0.16 \times 0.13 \times 0.08 \mathrm{~mm}$

Data collection
Bruker-Siemens SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.058, T_{\text {max }}=0.261$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
67 parameters
H -atom parameters constrained
$S=1.02$
$\Delta \rho_{\text {max }}=3.31 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.87 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{Br} 3$	$2.5939(15)$	$\mathrm{Sn} 1-\mathrm{Br} 4$	$2.6174(17)$
$\mathrm{Sn} 1-\mathrm{Br} 1$	$2.6027(15)$		
$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 1$	$89.06(5)$	$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 4^{\mathrm{i}}$	$90.21(5)$
$\mathrm{Br} 3^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 1$	$90.94(5)$	$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 4$	$90.57(6)$
$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 4^{\mathrm{i}}$	$89.43(6)$	$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 4$	$89.79(5)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{4 i}$	0.86	2.65	$3.375(13)$	142
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.86	2.98	$3.562(13)$	127
Symmetry codes: (ii) $-x+2,-y+1,-z-1$; (iii) $-x+1,-y+1,-z-1$				

Data collection: SMART (Bruker, 2006); cell refinement: SAINTPlus (Bruker, 2006); data reduction: SAINT-Plus; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008); program(s) used to refine structure: $X L$ in $S H E L X T L$; molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

Al al-Bayt University and Al-Balqa'a Applied University are thanked for supporting this work

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2139).

References

Al-Far, R. \& Ali, B. F. (2007). Acta Cryst. C63, m137-m139.
Ali, B. F. \& Al-Far, R. (2007). Acta Cryst. E63, m892-m894.
Ali, B. F., Al-Far, R. \& Al-Sou'od, K. (2007). J. Chem. Crystallogr. 37, 265-273.
Ali, B. F., Al-Far, R. \& Ng, S. W. (2007). Acta Cryst. E63, m2102-m2103.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. \& Besagni, T. (2005). Appl. Phys. A, 81, 963-968.

Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SADABS. Bruker AXS, Madison, Wisconsin, USA.
Fernandes, R. M. Jr, de Oliveira, G. M., Lang, E. S. \& Vázquez-López, E. M. (2004). Z. Anorg. Allg. Chem. 630, 2687-2691.

Hill, C. L. (1998). Chem. Rev. 98, 1-2.

metal-organic compounds

Kagan, C. R., Mitzi, D. B. \& Dimitrakopoulos, C. D. (1999). Science, 286, 945947.

Knutson, J. L., Martin, J. D. \& Mitzi, D. B. (2005). Inorg. Chem. 44, 4699-4705. Raptopoulou, C. P., Terzis, A., Mousdis, G. A. \& Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645-650.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tudela, D. \& Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003-1006
Willey, G. R., Woodman, T. J., Somasundaram, U., Aris, D. R. \& Errington, W. (1998). J. Chem. Soc. Dalton Trans. pp. 2573-2576.

supplementary materials

Bis(2-bromopyridinium) hexabromidostannate(IV)

B. F. Ali, R. H. Al-Far and S. F. Haddad

Comment

Noncovalent interactions play an important role in organizing structural units in both natural and artificial systems. Hybrid organic-inorganic compounds are of great interest owing to their ionic, electrical, magnetic and optical properties (Hill, 1998; Kagan et al., 1999; Raptopoulou et al., 2002). Tin metal-halo based hybrids are of particular interest as being materials with interesting optical and magnetic properties (Aruta et al., 2005; Knutson et al., 2005; Kagan et al., 1999). We are currently carrying out studies about lattice including different types of intermolecular interactions (aryl $\cdots \operatorname{aryl}, X \cdots X, X \cdots$ aryl and $X \cdots \mathrm{H}$). Within our research of hybrid compounds containing tin metal (Al-Far \& Ali 2007; Ali, Al-Far \& Al-Sou'od, 2007; Ali \& Al-Far, 2007; Ali, Al-Far \& Ng, 2007), the crystal structure of the title salt, (I), has been investigated.

The asymmetric unit of (I) contains one cation and one-half anion (Fig. 1). The whole (2-Br- $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left[\mathrm{SnBr}_{6}\right]$ geometry is generated through an inversion center with tin being lying on the special crystallographic position of $(1 / 2,1 / 2,0)$. The $\left(\mathrm{SnBr}_{6}\right)^{2-}$ anion forms a quasi-octahedral geometry (Table 1), with the $\mathrm{Sn}-\mathrm{Br}$ bond lengths are almost invariant. These lengths are in accordance with tin-bromide distances reported for $\left(\mathrm{SnBr}_{6}\right)^{2-}$ anion containing compounds (Willey et al.,1998; Tudela \& Khan 1991; Al-Far \& Ali 2007; Ali, Al-Far \& Al-Sou'od, 2007; Ali \& Al-Far, 2007; Ali, Al-Far \& Ng, 2007). Bond lengths and angles within the cation are as expected (Allen et al., 1987).

The packing of the structure (Fig. 2) can be described as layers of alternating anions and cations parallel to bc plane. In these layers each $\left(\mathrm{SnBr}_{6}\right)^{2-}$ anion is interacting with six cations via two $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions (Table 2) and the symmetry related ones along with two $\mathrm{Br} \cdots \mathrm{Br}$ interactions and symmetry related ones $[\mathrm{Br} 2 \cdots \mathrm{Br} 4$ and $\mathrm{Br} 2 \cdots \mathrm{Br} 1$ of 3.6666 (23) and 3.7779 (29) Å, respectively; Fig. 2].

The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions along with $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ synthons are potential building blocks for this stable supramolecular lattice. The stability of this lattice is evident in the isostructurality with the reported Te analogue (Fernandes et al., 2004).

Experimental

Warm solution of Sn metal $(1.0 \mathrm{mmol})$ dissolved in absolute ethanol $(10 \mathrm{ml})$ and $\mathrm{HBr}(60 \%, 5 \mathrm{ml})$, was added dropwise to a stirred hot solution of 2-bromopyridine (2 mmol) dissolved in ethanol $(10 \mathrm{ml})$. The mixture was then treated with liquid $\mathrm{Br}_{2}(2 \mathrm{ml})$ and refluxed for $3 / 2 \mathrm{~h}$. The resulting mixture was then filtered off, and allowed to stand undisturbed at room temperature. The salt crystallized over 1 d as nice yellow block crystals (yield: 83\%).

Refinement

H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ (for NH) and $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H , and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

supplementary materials

Figures

Fig. 1. A view of the asymmetric unit of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Bis(2-bromopyridinium) hexabromidostannate(IV)

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrN}\right)_{2}\left[\mathrm{SnBr}_{6}\right] \\
& M_{r}=916.12 \\
& \text { Triclinic, } P \mathrm{~T} \\
& \text { Hall symbol: }-\mathrm{P} 1 \\
& a=7.4037(15) \AA \\
& b=8.3393(17) \AA \\
& c=9.4302(19) \AA \\
& \alpha=73.14(3)^{\circ} \\
& \beta=67.98(3)^{\circ} \\
& \gamma=82.44(3)^{\circ} \\
& V=516.4(2) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=1 \\
& F_{000}=414 \\
& D_{\mathrm{x}}=2.946 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 255 \text { reflections } \\
& \theta=2.1-27.7^{\circ} \\
& \mu=16.71 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.16 \times 0.13 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker-Siemens SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 8.3 pixels mm^{-1}
$T=293$ (2) K
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.058, T_{\text {max }}=0.261$
1807 independent reflections
1308 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.091$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=2.4^{\circ}$
$h=-1 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 11$

2266 measured reflections

Refinement

Refinement on $F^{2} \quad$ Secondary atom site location: difference Fourier map

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.178$
$S=1.02$
1807 reflections
67 parameters
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1076 P)^{2}+1.002 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=3.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.87 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Sn1	0.5000	0.5000	0.0000	$0.0271(4)$
Br 4	$0.80819(19)$	$0.51691(17)$	$-0.25738(17)$	$0.0365(4)$
Br 3	$0.5601(2)$	$0.17999(16)$	$0.09614(18)$	$0.0394(4)$
Br 1	$0.2879(2)$	$0.43877(19)$	$-0.14375(19)$	$0.0426(4)$
Br 2	$0.6761(3)$	$0.2489(2)$	$-0.4484(2)$	$0.0674(6)$
C 2	$0.7936(19)$	$0.1051(18)$	$-0.5793(18)$	$0.038(3)^{*}$
N 1	$0.9316(17)$	$0.1687(17)$	$-0.7225(17)$	$0.049(3)^{*}$
H 1	0.9575	0.2732	-0.7499	0.059^{*}
C 3	$0.751(2)$	$-0.0578(18)$	$-0.5321(19)$	$0.042(3)^{*}$
H 3	0.6604	-0.1039	-0.4324	0.051^{*}
C 4	$0.845(2)$	$-0.155(2)$	$-0.6371(19)$	$0.047(4)^{*}$
H 4	0.8119	-0.2665	-0.6094	0.057^{*}
C5	$0.990(2)$	$-0.090(2)$	$-0.784(2)$	$0.051(4)^{*}$
H5	1.0572	-0.1560	-0.8526	0.061^{*}
C6	$1.028(3)$	$0.077(2)$	$-0.822(2)$	$0.060(5)^{*}$
H6	1.1225	0.1254	-0.9183	0.072^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.0304(6)$	$0.0249(6)$	$0.0213(7)$	$0.0021(5)$	$-0.0058(5)$	$-0.0048(5)$
Br4	$0.0387(7)$	$0.0322(7)$	$0.0294(8)$	$-0.0003(5)$	$-0.0011(6)$	$-0.0094(6)$

Br3	$0.0462(8)$	$0.0258(7)$	$0.0340(9)$	$0.0066(6)$	$-0.0067(6)$	$-0.0034(6)$
Br1	$0.0491(8)$	$0.0446(8)$	$0.0391(9)$	$-0.0002(6)$	$-0.0226(7)$	$-0.0094(7)$
Br2	$0.1089(15)$	$0.0522(10)$	$0.0491(11)$	$0.0059(10)$	$-0.0295(11)$	$-0.0268(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Sn} 1-\mathrm{Br} 3$	2.5939 (15)
$\mathrm{Sn} 1-\mathrm{Br} 3^{\text {i }}$	2.5939 (15)
$\mathrm{Sn} 1-\mathrm{Br} 1$	2.6027 (15)
$\mathrm{Sn} 1-\mathrm{Br} 1^{\text {i }}$	2.6027 (15)
$\mathrm{Sn} 1-\mathrm{Br} 4^{\text {i }}$	2.6174 (17)
$\mathrm{Sn} 1-\mathrm{Br} 4$	2.6174 (17)
$\mathrm{Br} 2-\mathrm{C} 2$	1.870 (15)
C2-C3	1.34 (2)
$\mathrm{C} 2-\mathrm{N} 1$	1.357 (19)
$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 3{ }^{\text {i }}$	180.0
$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 1$	89.06 (5)
$\mathrm{Br} 3{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Br} 1$	90.94 (5)
$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 1^{1}$	90.94 (5)
$\mathrm{Br} 3{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Br} 1^{\text {i }}$	89.06 (5)
$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 1^{\text {i }}$	180.00 (5)
$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 4^{\text {i }}$	89.43 (6)
$\mathrm{Br} 3{ }^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 4^{\text {i }}$	90.57 (6)
$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 4^{\text {i }}$	90.21 (5)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 4^{\mathrm{i}}$	89.79 (5)
$\mathrm{Br} 3-\mathrm{Sn} 1-\mathrm{Br} 4$	90.57 (6)
$\mathrm{Br} 3{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Br} 4$	89.43 (6)
$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 4$	89.79 (5)
$\mathrm{Br} 1^{\mathrm{i}}$ - $\mathrm{Sn} 1-\mathrm{Br} 4$	90.21 (5)
$\mathrm{Br} 4{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Br} 4$	180.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	120.3 (15)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 2$	121.8 (12)
C3-C2-N1-C6	1(2)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	177.7 (12)
N1-C2-C3-C4	-3(2)
Br2-C2-C3-C4	-179.9 (11)

$\mathrm{N} 1-\mathrm{C} 6$	$1.32(2)$
$\mathrm{N} 1-\mathrm{H} 1$	0.8600
$\mathrm{C} 3-\mathrm{C} 4$	$1.39(2)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.40(2)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.37(2)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{Br} 2$	$117.9(11)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$122.7(14)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1$	118.6
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	118.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.8(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.7(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.1
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$116.8(17)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	121.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	121.6
$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.6(17)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$3(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	

Symmetry codes: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Br} 4^{\mathrm{ii}}$	0.86	2.65	$3.375(13)$	142
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Br} 1^{\mathrm{iii}}$	0.86	2.98	$3.562(13)$	127
Symmetry codes: (ii) $-x+2,-y+1,-z-1 ;$ (iii) $-x+1,-y+1,-z-1$.				

sup-4

Fig. 1

Fig. 2

